Adaptive Response to DNA-Damaging Agents in Natural Saccharomyces cerevisiae Populations from “Evolution Canyon”, Mt. Carmel, Israel

نویسندگان

  • Gabriel A. Lidzbarsky
  • Tamar Shkolnik
  • Eviatar Nevo
چکیده

BACKGROUND Natural populations of most organisms, especially unicellular microorganisms, are constantly exposed to harsh environmental factors which affect their growth. UV radiation is one of the most important physical parameters which influences yeast growth in nature. Here we used 46 natural strains of Saccharomyces cerevisiae isolated from several natural populations at the "Evolution Canyon" microsite (Nahal Oren, Mt. Carmel, Israel). The opposing slopes of this canyon share the same geology, soil, and macroclimate, but they differ in microclimatic conditions. The interslope differences in solar radiation (200%-800% more on the "African" slope) caused the development of two distinct biomes. The south-facing slope is sunnier and has xeric, savannoid "African" environment while the north-facing slope is represented by temperate, "European" forested environment. Here we studied the phenotypic response of the S. cerevisiae strains to UVA and UVC radiations and to methyl methanesulfonate (MMS) in order to evaluate the interslope effect on the strains' ability to withstand DNA-damaging agents. METHODOLOGY/PRINCIPAL FINDINGS We exposed our strains to the different DNA-damaging agents and measured survival by counting colony forming units. The strains from the "African" slope were more resilient to both UVA and MMS than the strains from the "European" slope. In contrast, we found that there was almost no difference between strains (with similar ploidy) from the opposite slopes, in their sensitivity to UVC radiation. These results suggest that the "African" strains are more adapted to higher solar radiation than the "European" strains. We also found that the tetraploids strains were more tolerant to all DNA-damaging agents than their neighboring diploid strains, which suggest that high ploidy level might be a mechanism of adaptation to high solar radiation. CONCLUSIONS/SIGNIFICANCE Our results and the results of parallel studies with several other organisms, suggest that natural selection appears to select, at a microscale, for adaptive complexes that can tolerate the higher UV radiation on the "African" slope.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular-genetic biodiversity in a natural population of the yeast Saccharomyces cerevisiae from "Evolution Canyon": microsatellite polymorphism, ploidy and controversial sexual status.

The yeast S. cerevisiae is a central model organism in eukaryotic cell studies and a major component in many food and biotechnological industrial processes. However, the wide knowledge regarding genetics and molecular biology of S. cerevisiae is based on an extremely narrow range of strains. Studies of natural populations of S. cerevisiae, not associated with human activities or industrial ferm...

متن کامل

Adaptive evolution of duplicated hsp17 genes in wild barley from microclimatically divergent sites of Israel.

Gene duplication is a major evolutionary driving force for establishing new gene functions. However, very little is known about the involvement of the structural divergence of recent duplicated genes in local adaptation. We evaluated the nucleotide variation of recent duplicated pair copies of the hsp17 locus for small heat shock proteins, namely, the older copy hsp17a and the younger copy hsp1...

متن کامل

Divergence of Drosophila melanogaster repeatomes in response to a sharp microclimate contrast in Evolution Canyon, Israel.

Repeat sequences, especially mobile elements, make up large portions of most eukaryotic genomes and provide enormous, albeit commonly underappreciated, evolutionary potential. We analyzed repeatomes of Drosophila melanogaster that have been diverging in response to a microclimate contrast in Evolution Canyon (Mount Carmel, Israel), a natural evolutionary laboratory with two abutting slopes at a...

متن کامل

Natural Selection Causes Adaptive Genetic Resistance in Wild Emmer Wheat against Powdery Mildew at “Evolution Canyon” Microsite, Mt. Carmel, Israel

BACKGROUND "Evolution Canyon" (ECI) at Lower Nahal Oren, Mount Carmel, Israel, is an optimal natural microscale model for unraveling evolution in action highlighting the basic evolutionary processes of adaptation and speciation. A major model organism in ECI is wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, which displays dramatic interslope adaptive and speciational dive...

متن کامل

Adaptive methylation pattern of ribosomal DNA in wild barley from Israel

Forty four accessions of wild barley, H. spontaneum were assayed to study the methylation status of ribosomal DNA repeat units. For this purpose, BamHI and HpaII, which are, methylation sensitive restriction enzymes and MspI, which is methyl insensitive enzyme, were used for restriction digestion. Southern blots were hybridized with pTa71 probe, which represented a complete ribosomal DNA repeat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • PLoS ONE

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2009